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Abstract. Interested in electromagnetic waves inside plasmas with known dielectric properties, we prove
that Courant-Hilbert fields of the focus wave mode type can propagate in a steady-state, isotropic, neutral
plasma which is in fact a dielectric with the refractive index n2(ω) = 1 − ω2

p/ω2 where ωp is the plasma
frequency. We also prove that neutral, isotropic plasmas with memory behave for harmonic plane waves
as a time reversal mirror when the memory function is a decreasing exponential.

PACS. 42.25.Bs Wave propagation, transmission and absorption – 52.35.Hr Electromagnetic waves (e.g.,
electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid) – 52.27.Aj Single-component, electron-
positive-ion plasmas

1 Introduction

Harmonic plane waves are generally used to investigate the
propagation of electromagnetic waves in plasmas [1–3] be-
cause their dielectric properties are known when they are
excited by harmonic fields and also because they make
calculations easier with the idea that radiowave propa-
gation in cosmic plasmas is correctly described by plane
waves. This assumption leads for instance in a steady-
state, isotropic plasma to look for the solutions of the
partial differential equation satisfied by the electric field E
([3], Chap. 2)

∆E− ∇(∇ · E) + ω2c−2(D − i4πω−1j) = 0,
D = εE, j = σE (1)

in which ε, σ are the permittivity and the conductivity of
the plasma so that equation (1) becomes

∆E − ∇(∇ · E) + ω2c−2 ε′E = 0, ε′ = ε − i4πσ/ω.
(1a)

This equation simplifies for transverse waves since in this
case ∇ ·E = 0.

Our objective is different and we investigate in a
steady-state, isotropic, neutral plasma with known dielec-
tric properties, the propagation of nondiffractive electro-
magnetic waves, as they exist in free space, able to trans-
mit information at large distances and presenting a more
realistic approximation of the experimental situation as
plane waves.

It has been proved a long time ago by Courant-
Hilbert [4] that the wave equation in free space
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{c = 1, x = (x, y, z)}
(∆− ∂2

t )ψ(x, t) = 0, ∆ = ∂2
x + ∂2

y + ∂2
z (2)

has nondiffractive solutions (undistorted progressing
waves in their terminology) of the type

ψ(x, t) = A(x, t)F [Ω(x, t)] (3)

in which F is an arbitrary function (with continuous
derivatives), Ω a solution of the characteristic equation
linked to the wave equation (2)

(∂xΩ)2 + (∂yΩ)2 + (∂zΩ)2 − (∂tΩ)2 = 0 (4)

while the amplitude A does not depend on F . In addition
to plane and spherical waves, the best known non diffrac-
tive waves are the so-called focus wave modes of angular
frequency ω in which F (Ω) = exp(iωΩ), rediscovered si-
multaneously but independently by Brittingham [5] and
Kiselev [6] in their quest to get less diffractive beams as the
conventional laser beams, solutions of the paraxial wave
equation.

So, a natural question is whether electromagnetic
waves with similar properties can still propagate in a
plasma with properties not too far from free space such
as a steady-state, isotropic, neutral plasma. In such a
medium, Maxwell’s equations take the form

∇ ∧ E(x, t) + ∂tH(x, t) = 0,
∇ ∧ H(x, t) − ∂tE(x, t) = 4πj(x, t) (5a)

with in addition the divergence equations, the first one
being obtained from the linearized Poisson equation

∇ · E(x, t) = −4πe ρ(x, t), ∇ ·H(x, t) = 0 (5b)
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while the current j(x, t) induced in the plasma by the elec-
tric field satisfies the Ohm’s law

∂tj(x, t) = (ne2/m)E(x, t), ω2
p = 4πne2/m (6)

and ωp is the plasma frequency.
In these expressions, e, m are the charge and the mass

of electrons, ne the equilibrium charge density of ions and
electrons and ρ the charge density.

We investigate afterwards a problem a bit different
but still in the same mood of discussing electromagnetic
wave propagation in plasmas with known dielectric prop-
erties by considering what happens in plasmas endowed
with memory. Some works [7,8] in which the memory
effects come from non-Markovian dielectric fluctuations
have been recently published but here we assign a differ-
ent origin to the memory effects by supposing that the
current induced in the plasma depends not only on the
electric field at the time t but also on its past history
as the displacement current in a Maxwell-Hopkinson di-
electric [9,10] so that we have to deal with a generalized
Ohm’s law.

This paper in which the propagation is supposed in
the z-direction to avoid cumbersome notations is orga-
nized as follows: Section 2 is devoted to propagation in a
2D-plasma of TE, TM, Courant-Hilbert fields when elec-
tromagnetic wave polarization can be neglected making
calculations very simple. The same problem is analyzed
in Section 3 for Courant-Hilbert waves with arbitrary po-
larization propagating in a steady-state, isotropic, neutral
3D-plasma and we get a simple generalization of the free
space focus wave modes. Section 4 is concerned with elec-
tromagnetic plane waves inside a plasma with memory de-
scribed by an induced current of the Maxwell-Hopkinson
type: a particular attention is given to exponential mem-
ory functions supplying a time reversal mirror behaviour
of the plasma. Conclusive comments are given in Section 5.

2 TE, TM Courant-Hilbert fields

Assuming that the electromagnetic field polarization can
be neglected, we may suppose that one of the two trans-
verse coordinates x, y: say y, does not play any role. Then
Ex = Ez = Hy = 0 for TE waves implying jx = jz = 0
and the Maxwell equations (5a) reduce to

∂tHx = ∂zEy, ∂tHz = −∂xEy ,

∂zHx − ∂xHz = 4πjy + ∂tEy. (7)

Performing the time derivative of the third equation (7)
and using the first two equations together with equa-
tions (6), a simple calculation shows that the y-component
Ey is solution of the Klein-Gordon equation

(∂2
x + ∂2

z − ∂2
t − ω2

p)Ey = 0 (8)

from which the other two components may be obtained.

Similarly Hx = Hz = Ey = 0 = jy for TM waves and
equations (5a) reduce to

∂zHy = −(4πjx + ∂tEx), ∂xHy = 4πjz + ∂tEz ,

∂zEx − ∂xEz + ∂tHy = 0 (9)

and obtaining the Klein-Gordon equation satisfied by Hy

is a bit less simple than for TE fields. Using (6), we get
from the first two equations (9)

∂t∂
2
zHy = −(∂2

t + ω2
p)∂zEx, ∂t∂

2
xHy = (∂2

t + ω2
p)∂xEz.

(9a)
Summing these two relations and taking into account the
third equation (9) give finally

(∂2
x + ∂2

z − ∂2
t − ω2

p)∂tHy = 0. (10)

Consequently, to get the TE, TM electromagnetic waves
propagating in a steady-state, isotropic neutral plasma,
we have to solve th 2D-Klein-Gordon equation

(∂2
x + ∂2

z − ∂2
t − ω2

p)ψ(x, z, t) = 0 (11)

with the corresponding characteristic equation

(∂xΩ
2) + (∂zΩ

2) − (∂tΩ
2) = 0 (12)

satisfied by the linear phases t±z but also by the Gaussian
phases

Ω(x, z, t) = t− z − x2(t+ z + ia)−1, i =
√−1, a > 0

(12a)
used in conventional 2D-focus wave modes (also called
arrow wave modes [11]) to generalize the 2D-Gaussian
beams.

With the phase (12a), the Courant-Hilbert solutions
of exponential type are

ψ(x, z, t) = A(z, t) exp
[
iω

{
t− z − x2(t+ z + ia)−1

}]
(13)

and substituting (13) into (11), we get in Appendix A the
following expression of A(z, t)

A(z, t) = A(t+ z + ia)−1/2 exp
[−iω2

p(t+ z + ia)/4ω
]

(13a)
(A is an arbitrary constant) reducing to the amplitude of
2D-focus wave modes [11] for ωp = 0.

We note Ae, Ah the constant A for TE, TM fields re-
spectively and ψe, ψh the corresponding Courant-Hilbert
fields. Then, using (7), (9) it is easy to get the non-null
components of the electromagnetic field

Ey = ∂tψe, Hx = ∂zψe, Hz = −∂xψe

Hy = (∂2
t + ω2

p)ψh, Ex = −∂t∂zψh, Ez = ∂t∂xψh

(14)

and it is easily checked that these fields satisfy the diver-
gence equations (5b).

It is stated in the introduction that the amplitude
A(x, t) of the Courant-Hilbert solutions of the wave equa-
tion (2) does not depend on the function F which may be
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arbitrary, provided that continuous derivatives of F exist.
But A is compelled to satisfy an overdetermined system of
differential equations [4], rather curiously fulfilled in free
space, which is not the case here due to the presence of
the ω2

p term in equation (11). So, F must be an exponen-
tial function since all its derivatives being proportional to
F make sure that A will not depend on F . Consequently,
all the Courant-Hilbert fields propagating in a plasma are
of the focus wave modes type with harmonic plane waves
as a particular case. In addition, there is no guarantee
that for any phase of the characteristic equation (12), the
differential equations for A supply fair solutions.

3 Courant-Hilbert electromagnetic waves

As well-known, only two components that we take here as
Ey and Hy are needed to describe the full electromagnetic
field since the other components are supplied by Maxwell’s
equations. Then, using the notation b2 = ∂2

t +ω2
p to make

calculations less cumbersome and taking the time deriva-
tive of four among the six curl equations (5a) give the
relations

∂y∂tEz − ∂z∂tEy = −∂2
tHx, ∂x∂tEy − ∂y∂tEx = −∂2

tHz

(15a)

∂y∂tHz − ∂z∂tHy = b2Ex, ∂x∂tHy − ∂y∂tHx = b2Ez.
(15b)

Substituting (15b) into (15a) and vice versa, we get the
components Hx,z, Ex,z in terms of Hy and Ey

(∂2
y − b2)∂2

tHx = ∂x∂y∂
2
tHy − b2∂z∂tEy

(∂2
y − b2)∂2

tHz = ∂z∂y∂
2
tHy + b2∂x∂tEy (16a)

and

(∂2
y − b2)∂tEx = ∂z∂

2
tHy + ∂x∂y∂tEy

(∂2
y − b2)∂tEz = −∂x∂

2
tHy + ∂z∂y∂tEy. (16b)

Now we get from the last two curl equations

(∂2
y − b2)∂z∂

2
tHx − (∂2

y − b2)∂x∂
2
tHz = b2(∂2

y − b2)∂tEy

(17a)

(∂2
y − b2)∂z∂tEx − (∂2

y − b2)∂x∂tEz = −(∂2
y − b2)∂2

tHy.

(17b)

Substituting (16a) into (17a), (16b) into (17b) and using
the definition of the b2 operator give the partial differential
equations satisfied by Ey and Hy

(∆− ∂2
t − ω2

p)∂2
tHy(x, t) = 0,

(∆− ∂2
t − ω2

p)∂tEy(x, t) = 0. (18)

So finally, we have to solve the 3D-Klein-Gordon equation

(∆− ∂2
t − ω2

p)Ψ(x, t) = 0 (19)

with the characteristic equation (4). The solution of equa-
tion (4) generalizing (12a) and also used in [5,6] is

Ω(x, t) = t− z − r2(t+ z + ia)−1, r2 = x2 + y2 (20)

so that the Courant-Hilbert solutions of the focus wave
mode type have the form

Ψ(x, t) = A(z, t) exp
[
iω

{
t− z − r2(t+ z + ia)−1

}]
(21)

and substituting (21) into (19) we get in equation (A.12)
of Appendix A with the arbitrary constant A

A(z, t) = A(t+ z+ ia)−1 exp
[−iω2

p(t+ z + ia)/4ω
]

(22)

reducing to the amplitudes of focus wave modes [5,6] for
ωp = 0. Note that the attenuation factor (t+ z + ia)−1/2

in (13a) becomes (t+ z + ia)−1 in (22).
With the constants Ae, Ah linked to the Ey, Hy

components as in Section 2 and taking into account
the relations (16a, 16b) the Courant-Hilbert electromag-
netic waves propagating in a stationary, isotropic, neutral
plasma have the expressions in terms of the two scalar
fields Ψe, Ψh

Ey = (∂2
z − ∂2

t − ω2
p)∂tΨe, Ex = ∂z∂tΨh + ∂x∂y∂tΨe,

Ez = −∂x∂tΨh + ∂z∂y∂tΨe, Hy = (∂2
z − ∂2

t − ω2
p)Ψh,

Hx = ∂x∂yΨh Hz = ∂z∂yΨh

− (∂2
t + ω2

p)∂zΨe, + (∂2
t + ω2

p)∂xΨe.

(23)

A simple calculation shows that with (23) the divergence
equations (5b) are satisfied.

Remark. Instead of r2 = x2 +y2 in the phase (20) we
could use (x cos θ+ y sin θ)2 with an arbitrary angle θ but
since for θ = 0, the phase (20) has the expression (12a),
the attenuation factor in the amplitude A is the same as
for TE and TM waves.

4 Electromagnetic waves in a plasma
with memory

Leaving aside the Courant-Hilbert fields, but still inter-
ested in waves able to propagate inside a plasma with
known dielectric properties, we now investigate electro-
magnetic field in a neutral isotropic plasma with dielec-
tric properties such as the current induced by the electric
field has a form similar to that of the displacement current
proposed a long time ago by Hopkinson [9] on a Maxwell’s
suggestion to explain the results of his experiments on
Leyden jars.

Explicitly, as a substitute to equation (6) in the intro-
duction, the Courant j(x, t) induced in the plasma satisfies
now the generalized Ohm’s law

4π∂tj(x, t) = ω2
pE(x, t) + β2

∫ ∞

0

dτR(τ)E(x, t− τ) (24)
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in which the memory function R(t), t ≥ 0 is a mono-
tonically decreasing function of t which is continuous for
0 ≤ t <∞ while β is the Mawxell-Hopkinson frequency.

Then, proceeding as in Section 3, the scalar field
Ψ(x, t) linked to the components Ey, Hy by the rela-
tions (23) is solution of the partial differential equation

(∆− ∂2
t )Ψ(x, t) = ω2

pΨ(x, t) + β2

∫ ∞

0

dτR(τ)Ψ(x, t − τ)

(25)
and to solve this equation, we introduce the Laplace trans-
form ψ(x, s) of Ψ(x, t)

ψ(x, s) =
∫ ∞

0

dt exp(−st)Ψ(x, t) (26)

so that taking the Laplace transform of equation (25) gives

(∆− s2)ψ(x, s) = −[sΨ(x, 0) + Ψ ′(x, 0)] + ω2
p ψ(x, s)

+ β2

∫ ∞

0

dτR(τ) exp(−sτ)ψ(x, s)

= −[sΨ(x, 0) + Ψ ′(x, 0)]

+ [ω2
p + β2r(s)]ψ(x, s) (27)

where r(s) is the Laplace transform of R(t) while Ψ(x, 0),
Ψ ′(x, 0) are the field Ψ and its time derivative at t = 0.

We now look for plane wave solutions of equation (27)

ψ(x, s) = exp(ik · x)a(s) (28)

and substituting (28) into (27) gives the differential equa-
tion for a(s) in which k2 = |k|2

[k2 + s2 + χ2(s)]a(s) = [sA(0) +A′(0)],

χ2(s) = ω2
p + β2r(s) (29)

A(0) is the inverse Laplace transform of a(s) at t = 0 and
A′(0) its time derivative.

As an illustration, we suppose that the memory func-
tion of the dielectric has the form also suggested by
Hopkinson [9] R(t) = T−1 exp(−t/T ) with the Laplace
transform r(s) = (1+sT )−1 [12] so that according to (29)

a(s) = [sA(0) +A′(0)]
[
ω2 + s2 + β2(1 + sT )−1

]−1
,

ω2 = k2 + ω2
p. (30)

We check easily that the Abel asymptotic relations [12]
are fulfilled by this expression

lim
s⇒∞ s a(s) = A(0),

lim
s⇒∞ s[a(s) −A(0)] = A′(0). (31)

So, for s large enough to make the last term in (30) neg-
ligible we get

a(s) ≈ [sA(0) +A′(0)]
[
ω2 + s2

]−1
(32)

with the inverse Laplace transform

A(t<) = A(0) cos(ωt) + ω−1 sin(ωt)A′(0) (32a)

where the notation t< means that this expression holds
valid at short times t� T after the launch of the electro-
magnetic pulse.

At the opposite for large times, that is for small s such
that sT is much smaller than unity, the expression (30)
reduces to

a(s) ≈ [sA(0) +A′(0)]
[
ω2

1 + s2
]−1

, ω2
1 = ω2 +β2 (33)

whose inverse Laplace transform is

A(t>) = A(0) cos(ω1t) + ω−1
1 sin(ω1t)A′(0) (33a)

the notation t> meaning that (33a) is valid for t� T .
Then, with the initial conditions A(0) = 1, A′(0) = iω,

we have

A(t<) = exp(−iωt),
A(t>) = (1 + ω/ω1) exp(−iω1t) + (1 − ω/ω1) exp(iω1t)

(34)

and the dielectric plasma with memory plays, coupled
with a frequency-shift converter, the role of a time
reversal mirror [13,14] with the reflection coefficient
(ω1 − ω)(ω1 + ω)−1.

5 Discussion

This work proves that electromagnetic focus wave modes
can propagate in steady-state, isotropic, neutral plasmas,
In fact, these waves carry on an infinite energy and there-
fore are not physically realizable, no more than plane
waves. But, the possibility of generating finite energy
approximations of these waves, known as splash wave
modes [15,16], with a non-diffracting behaviour on an im-
portant distance has been proved from a theoretical point
of view, leading to practical realizations in acoustics [17].
In addition, many experiments [18,19] have justified this
concept of energy directed beams. So, in this part of the
Universe which may be considered as a neutral plasma,
very energetic electromagnetic beams could propagate, all
the more undistorted as they are more energetic, very far
from their source and the recently observed gamma ray
bursts [20] are perhaps a manifestation of their existence.

Electromagnetic harmonic waves propagating in
Maxwell-Hopkinson, neutral, isotropic plasmas present
rather unusual properties that would lead to justify the
generalized Ohm’s law (24) if they were confirmed by ex-
perimental observations. This challenge could be taken up
by coupling a charged particle modelisation of plasmas
with the laws of mechanics as was made [21] for a mag-
netic plasma, but in this case the generalized Ohm’s law
has not the form (24). And the question is: what plasmas
have the properties of a Maxwell-Hopkinson dielectric?

Appendix A

To get the solutions of the Klein-Gordon equation (11) in
the form (13), we first deduce from (12a) the relations in
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which for simplification we write D = t+ z + ia

∂xΩ = −2xD−1, ∂zΩ = −1 + x2D−2, ∂tΩ = 1 + x2D−2

∂2
xΩ = −2D−1, ∂2

zΩ = −2x2D−3, ∂2
tΩ = −2x2D−3

(A.1)

so that taking into account (12) the phase Ω satisfies the
relation

(∂xΩ)2 + (∂zΩ)2 − (∂tΩ)2 = 0, ∂2
zΩ − ∂2

tΩ = 0. (A.2)

So, writing the scalar field (13) in the form ψ = A exp(iΩ),
we get:

∂xψ = iωA∂xΩ exp(iωΩ)
∂zψ = [∂zA+ iωA∂zΩ] exp(iωΩ) (A.3)

giving as second derivatives

∂2
xψ =

[
iω∂2

xΩ − ω2(∂xΩ)2
]
A exp(iωΩ)

∂2
zψ =

[
∂2

zA+ 2iω∂zA∂zΩ + iωA∂2
zΩ − ω2A(∂zΩ)2

]
× exp(iωΩ) (A.4)

and we have just to change ∂z into ∂t in this last rela-
tion to get ∂2

t ψ. Then, substituting (A.4) augmented with
∂2

t ψ into the Klein-Gordon equation (11) and using (A.2)
give the partial differential equation satisfied by the am-
plitude A(z, t)

(∂2
z − ∂2

t )A+ 2iω (∂zA∂zΩ − ∂tA∂tΩ)

+ iωA∂2
xΩ − ω2

pA = 0 (A.5)

in which according to (A.1)

∂zA∂zΩ− ∂tA∂tΩ = −(∂zA+ ∂tA) + x2D−2(∂zA− ∂tA).
(A.6)

But, since A does not depend on x, the coefficient of x2

in (A.6) must be null implying ∂zA = ∂tA so that the
partial differential equation (A.5) becomes also using the
expression (A.1) of ∂2

xΩ

4iω∂zA+ 2iωD−1A+ ω2
pA = 0. (A.7)

with the solution in whichD is given its explicit expression
while A is an arbitrary constant

A(z, t) = (t+ z + ia)−1/2 exp[−iω2
p(t+ z + ia)/ω]. (A.8)

Similarly in the 3D-case, we have just to change x2 into
x2 + y2 in (A.1) with in addition the derivative ∂2

yΩ =
−2D−1 while the relation (A.2) becomes

(∂xΩ)2 + (∂yΩ)2 + (∂zΩ)2 − (∂tΩ)2 = 0,

∂2
zΩ + ∂2

yΩ − ∂2
tΩ = 0. (A.9)

Then, substituting in the Klein-Gordon equation (19) the
expression (A.4) augmented with ∂2

yψ, ∂2
t ψ, deduced at

once from ∂2
xψ and ∂2

zψ respectively, we get for A(z, t) the
partial differential equation

(∂2
z − ∂2

t )A+ 2iω (∂zA∂zΩ − ∂tA∂tΩ)

+ iωA(∂2
xΩ + ∂2

yΩ) − ω2
pA = 0. (A.10)

In this case also ∂zA = ∂tA and since ∂2
xΩ = ∂2

yΩ =
−2D−1, this equation reduces to

4iω∂zA+ 4iωD−1A+ ω2
pA = 0 (A.11)

similar to (A.7) except for a coefficient 4 instead of 2 in
the second term and the solution of (A.11) is

A(z, t) = (t+ z + ia)−1 exp[−iω2
p(t+ z + ia)/ω]. (A.12)

Note added in proof

After the completion of this work we became aware that
dielectrics with memory are discussed in: A.C. Eringen,
G.A. Maugen, Electrodynamics of Continua (Springer,
New York, 1990), Chap. 13.
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